Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Signal Transduct Target Ther ; 8(1): 242, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: covidwho-20241193

RESUMO

Repurposing existing drugs to inhibit SARS-CoV-2 infection in airway epithelial cells (AECs) is a quick way to find novel treatments for COVID-19. Computational screening has found dicoumarol (DCM), a natural anticoagulant, to be a potential SARS-CoV-2 inhibitor, but its inhibitory effects and possible working mechanisms remain unknown. Using air-liquid interface culture of primary human AECs, we demonstrated that DCM has potent antiviral activity against the infection of multiple Omicron variants (including BA.1, BQ.1 and XBB.1). Time-of-addition and drug withdrawal assays revealed that early treatment (continuously incubated after viral absorption) of DCM could markedly inhibit Omicron replication in AECs, but DCM did not affect the absorption, exocytosis and spread of viruses or directly eliminate viruses. Mechanistically, we performed single-cell sequencing analysis (a database of 77,969 cells from different airway locations from 10 healthy volunteers) and immunofluorescence staining, and showed that the expression of NAD(P)H quinone oxidoreductase 1 (NQO1), one of the known DCM targets, was predominantly localised in ciliated AECs. We further found that the NQO1 expression level was positively correlated with both the disease severity of COVID-19 patients and virus copy levels in cultured AECs. In addition, DCM treatment downregulated NQO1 expression and disrupted signalling pathways associated with SARS-CoV-2 disease outcomes (e.g., Endocytosis and COVID-19 signalling pathways) in cultured AECs. Collectively, we demonstrated that DCM is an effective post-exposure prophylactic for SARS-CoV-2 infection in the human AECs, and these findings could help physicians formulate novel treatment strategies for COVID-19.


Assuntos
COVID-19 , Dicumarol , Humanos , SARS-CoV-2 , COVID-19/genética , Epitélio
2.
Comput Struct Biotechnol J ; 20: 2442-2454, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-1894921

RESUMO

Cathepsin L (CTSL), a cysteine protease that can cleave and activate the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein, could be a promising therapeutic target for coronavirus disease 2019 (COVID-19). However, there is still no clinically available CTSL inhibitor that can be used. Here, we applied Chemprop, a newly trained directed-message passing deep neural network approach, to identify small molecules and FDA-approved drugs that can block CTSL activity to expand the discovery of CTSL inhibitors for drug development and repurposing for COVID-19. We found 5 molecules (Mg-132, Z-FA-FMK, leupeptin hemisulfate, Mg-101 and calpeptin) that were able to significantly inhibit the activity of CTSL in the nanomolar range and inhibit the infection of both pseudotype and live SARS-CoV-2. Notably, we discovered that daptomycin, an FDA-approved antibiotic, has a prominent CTSL inhibitory effect and can inhibit SARS-CoV-2 pseudovirus infection. Further, molecular docking calculation showed stable and robust binding of these compounds with CTSL. In conclusion, this study suggested for the first time that Chemprop is ideally suited to predict additional inhibitors of enzymes and revealed the noteworthy strategy for screening novel molecules and drugs for the treatment of COVID-19 and other diseases with unmet needs.

3.
Zool Res ; 43(3): 457-468, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: covidwho-1836354

RESUMO

COVID-19 is an immune-mediated inflammatory disease caused by SARS-CoV-2 infection, the combination of anti-inflammatory and antiviral therapy is predicted to provide clinical benefits. We recently demonstrated that mast cells (MCs) are an essential mediator of SARS-CoV-2-initiated hyperinflammation. We also showed that spike protein-induced MC degranulation initiates alveolar epithelial inflammation for barrier disruption and suggested an off-label use of antihistamines as MC stabilizers to block degranulation and consequently suppress inflammation and prevent lung injury. In this study, we emphasized the essential role of MCs in SARS-CoV-2-induced lung lesions in vivo, and demonstrated the benefits of co-administration of antihistamines and antiviral drug remdesivir in SARS-CoV-2-infected mice. Specifically, SARS-CoV-2 spike protein-induced MC degranulation resulted in alveolar-capillary injury, while pretreatment of pulmonary microvascular endothelial cells with antihistamines prevented adhesion junction disruption; predictably, the combination of antiviral drug remdesivir with the antihistamine loratadine, a histamine receptor 1 (HR1) antagonist, dampened viral replication and inflammation, thereby greatly reducing lung injury. Our findings emphasize the crucial role of MCs in SARS-CoV-2-induced inflammation and lung injury and provide a feasible combination antiviral and anti-inflammatory therapy for COVID-19 treatment.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Lesão Pulmonar , Doenças dos Roedores , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , COVID-19/veterinária , Células Endoteliais , Antagonistas dos Receptores Histamínicos/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/veterinária , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/veterinária , Camundongos , Doenças dos Roedores/tratamento farmacológico , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
4.
Am J Physiol Lung Cell Mol Physiol ; 322(5): L712-L721, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1759484

RESUMO

Accumulating evidence has confirmed that chronic obstructive pulmonary disease (COPD) is a risk factor for development of severe pathological changes in the peripheral lungs of patients with COVID-19. However, the underlying molecular mechanisms remain unclear. Because bronchiolar club cells are crucial for maintaining small airway homeostasis, we sought to explore whether the altered susceptibility to SARS-CoV-2 infection of the club cells might have contributed to the severe COVID-19 pneumonia in COPD patients. Our investigation on the quantity and distribution patterns of angiotensin-converting enzyme 2 (ACE2) in airway epithelium via immunofluorescence staining revealed that the mean fluorescence intensity of the ACE2-positive epithelial cells was significantly higher in club cells than those in other epithelial cells (including ciliated cells, basal cells, goblet cells, neuroendocrine cells, and alveolar type 2 cells). Compared with nonsmokers, the median percentage of club cells in bronchiolar epithelium and ACE2-positive club cells was significantly higher in COPD patients. In vitro, SARS-CoV-2 infection (at a multiplicity of infection of 1.0) of primary small airway epithelial cells, cultured on air-liquid interface, confirmed a higher percentage of infected ACE2-positive club cells in COPD patients than in nonsmokers. Our findings have indicated the role of club cells in modulating the pathogenesis of SARS-CoV-2-related severe pneumonia and the poor clinical outcomes, which may help physicians to formulate a novel therapeutic strategy for COVID-19 patients with coexisting COPD.


Assuntos
COVID-19 , Doença Pulmonar Obstrutiva Crônica , Enzima de Conversão de Angiotensina 2 , Células Epiteliais , Humanos , Pulmão , Peptidil Dipeptidase A , SARS-CoV-2
5.
iScience ; 25(3): 103967, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: covidwho-1699805

RESUMO

The outbreak of Coronavirus disease 2019 (COVID-19) throughout the world has caused millions of death, while the dynamics of host responses and the underlying regulation mechanisms during SARS-CoV-2 infection are not well depicted. Lung tissues from a mouse model sensitized to SARS-CoV-2 infection were serially collected at different time points for evaluation of transcriptome, proteome, and phosphoproteome. We showed the ebb and flow of several host responses in the lung across the viral infection. The signaling pathways and kinases regulating networks were alternated at different phases of infection. This multiplex evaluation also revealed that many kinases of the CDK and MAPK family were interactive and served as functional hubs in mediating the signal transduction during SARS-CoV-2 infection. Our study not only revealed the dynamics of lung pathophysiology and their underlying molecular mechanisms during SARS-CoV-2 infection, but also highlighted some molecules and signaling pathways that might guide future investigations on COVID-19 therapies.

6.
J Med Virol ; 93(5): 3257-3260, 2021 05.
Artigo em Inglês | MEDLINE | ID: covidwho-1196531

RESUMO

Previous studies have revealed a diagnostic role of pathogen-specific IgA in respiratory infections. However, co-detection of serum specific IgA for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and common respiratory pathogens remains largely unexplored. This study utilizes a protein microarray technology for simultaneous and quantitative measurements of specific IgAs for eight different respiratory pathogens including adenovirus, respiratory syncytial virus, influenza virus type A, influenza virus type B, parainfluenza virus, mycoplasma pneumoniae, chlamydia pneumoniae, and SARS-CoV-2 in serum sample of patients with coronavirus disease 2019 (COVID-19). A total of 42 patients with COVID-19 were included and categorized into severe cases (20 cases) and nonsevere cases (22 cases). The results showed that co-detection rate of specific-IgA for SARS-CoV-2 with at least one pathogen were significantly higher in severe cases than that of nonsevere cases (72.2% vs. 46.2%, p = .014). Our study indicates that co-detection of IgA antibodies for respiratory pathogens might provide diagnostic value for the clinics and also be informative for risk stratification and disease management in patients with COVID-19.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/imunologia , Imunoglobulina A/sangue , SARS-CoV-2/imunologia , Adulto , Especificidade de Anticorpos , COVID-19/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
7.
ACS Nano ; 15(2): 2738-2752, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: covidwho-1036015

RESUMO

The coronavirus disease pandemic of 2019 (COVID-19) caused by the novel SARS-CoV-2 coronavirus resulted in economic losses and threatened human health worldwide. The pandemic highlights an urgent need for a stable, easily produced, and effective vaccine. SARS-CoV-2 uses the spike protein receptor-binding domain (RBD) to bind its cognate receptor, angiotensin-converting enzyme 2 (ACE2), and initiate membrane fusion. Thus, the RBD is an ideal target for vaccine development. In this study, we designed three different RBD-conjugated nanoparticle vaccine candidates, namely, RBD-Ferritin (24-mer), RBD-mi3 (60-mer), and RBD-I53-50 (120-mer), via covalent conjugation using the SpyTag-SpyCatcher system. When mice were immunized with the RBD-conjugated nanoparticles (NPs) in conjunction with the AddaVax or Sigma Adjuvant System, the resulting antisera exhibited 8- to 120-fold greater neutralizing activity against both a pseudovirus and the authentic virus than those of mice immunized with monomeric RBD. Most importantly, sera from mice immunized with RBD-conjugated NPs more efficiently blocked the binding of RBD to ACE2 in vitro, further corroborating the promising immunization effect. Additionally, the vaccine has distinct advantages in terms of a relatively simple scale-up and flexible assembly. These results illustrate that the SARS-CoV-2 RBD-conjugated nanoparticles developed in this study are a competitive vaccine candidate and that the carrier nanoparticles could be adopted as a universal platform for a future vaccine development.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Vacinas contra COVID-19/uso terapêutico , COVID-19/prevenção & controle , Nanopartículas/uso terapêutico , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , COVID-19/metabolismo , Vacinas contra COVID-19/farmacologia , Chlorocebus aethiops , Feminino , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Glicoproteína da Espícula de Coronavírus/química , Células Vero
8.
JAMA Intern Med ; 181(1): 71-78, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: covidwho-775497

RESUMO

Importance: Lymphopenia is common and correlates with poor clinical outcomes in patients with coronavirus disease 2019 (COVID-19). Objective: To determine whether a therapy that increases peripheral blood leukocyte and lymphocyte cell counts leads to clinical improvement in patients with COVID-19. Design, Setting and Participants: Between February 18 and April 10, 2020, we conducted an open-label, multicenter, randomized clinical trial at 3 participating centers in China. The main eligibility criteria were pneumonia, a blood lymphocyte cell count of 800 per µL (to convert to ×109/L, multiply by 0.001) or lower, and no comorbidities. Severe acute respiratory syndrome coronavirus 2 infection was confirmed with reverse-transcription polymerase chain reaction testing. Exposures: Usual care alone, or usual care plus 3 doses of recombinant human granulocyte colony-stimulating factor (rhG-CSF, 5 µg/kg, subcutaneously at days 0-2). Main Outcomes and Measures: The primary end point was the time from randomization to improvement of at least 1 point on a 7-category disease severity score. Results: Of 200 participants, 112 (56%) were men and the median (interquartile range [IQR]) age was 45 (40-55) years. There was random assignment of 100 patients (50%) to the rhG-CSF group and 100 (50%) to the usual care group. Time to clinical improvement was similar between groups (rhG-CSF group median of 12 days (IQR, 10-16 days) vs usual care group median of 13 days (IQR, 11-17 days); hazard ratio, 1.28; 95% CI, 0.95-1.71; P = .06). For secondary end points, the proportion of patients progressing to acute respiratory distress syndrome, sepsis, or septic shock was lower in the rhG-CSF group (rhG-CSF group, 2% vs usual care group, 15%; difference, -13%; 95%CI, -21.4% to -5.4%). At 21 days, 2 patients (2%) had died in the rhG-CSF group compared with 10 patients (10%) in the usual care group (hazard ratio, 0.19; 95%CI, 0.04-0.88). At day 5, the lymphocyte cell count was higher in the rhG-CSF group (rhG-CSF group median of 1050/µL vs usual care group median of 620/µL; Hodges-Lehmann estimate of the difference in medians, 440; 95% CI, 380-490). Serious adverse events, such as sepsis or septic shock, respiratory failure, and acute respiratory distress syndrome, occurred in 29 patients (14.5%) in the rhG-CSF group and 42 patients (21%) in the usual care group. Conclusion and Relevance: In preliminary findings from a randomized clinical trial, rhG-CSF treatment for patients with COVID-19 with lymphopenia but no comorbidities did not accelerate clinical improvement, but the number of patients developing critical illness or dying may have been reduced. Larger studies that include a broader range of patients with COVID-19 should be conducted. Trial Registration: Chinese Clinical Trial Registry: ChiCTR2000030007.


Assuntos
Tratamento Farmacológico da COVID-19 , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Fármacos Hematológicos/uso terapêutico , Mortalidade Hospitalar , Linfopenia/tratamento farmacológico , Corticosteroides/uso terapêutico , Adulto , Antibacterianos/uso terapêutico , Antivirais/uso terapêutico , Linfócitos B , Contagem de Linfócito CD4 , COVID-19/sangue , COVID-19/complicações , COVID-19/fisiopatologia , China , Progressão da Doença , Feminino , Humanos , Células Matadoras Naturais , Contagem de Leucócitos , Contagem de Linfócitos , Linfopenia/sangue , Linfopenia/complicações , Masculino , Pessoa de Meia-Idade , Mortalidade , Ventilação não Invasiva , Oxigenoterapia , Proteínas Recombinantes , Síndrome do Desconforto Respiratório/fisiopatologia , Insuficiência Respiratória/fisiopatologia , SARS-CoV-2 , Sepse/fisiopatologia , Choque Séptico/fisiopatologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA